
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 13, NO. 3, MARCH 2003 117

At least N + 1 Finite Transmission Zeros Using
Frequency-Variant Negative Source-Load Coupling

Sanghoon Shin, Member, IEEE, and Richard V. Snyder, Fellow, IEEE

Abstract—A second-order cross-coupled combline filter which
has three finite transmission zeros is presented. The problem of
the frequency-invariant coupling in a real circuit is introduced. To
make extra transmission zeros, a top metalized dielectric block is
used.

Index Terms—Bandpass filters, combline filters, cross coupling,
transmission zeros.

I. INTRODUCTION

COUPLING matrices of the low-pass prototype filter have
been widely used in direct-coupled resonator bandpass

filter synthesis. Frequency-invariant coupling matrices for
the given topology can be obtained by using a low-pass
prototype filter and ideal impedance inverters, combined
with a sequence of similarity transformations and efficient
optimization techniques [1]–[4]. In implementing the coupling
matrix, filter response is degraded to some extent and tuning
and optimization are required. Sometimes coupling coefficients
from the coupling matrix may not be realizable. Under the
frequency-invariant coupling, is the maximum number
of finite transmission zeros. This is theoretically verified for

-coupled resonator networks without source-load coupling
[5]. In recent work [6], when source-load coupling is involved,
realization of at least maximum finite transmission zeros
from -coupled resonators is presented.

However, the result is only valid for frequency-invariant cou-
plings. With a frequency-variant inverter, a waveguide cavity
filter that has more than transmission zeros was reported [7].
In this letter, the difference between the frequency-variant cou-
pling and invariant coupling in filter response is introduced. An
available method for source-load negative coupling in planar
bandpass filter design is proposed. This result shows three finite
transmission zeros out of two physical resonators. A two-pole
combline filter with equivalent circuit is presented as an ex-
ample.

II. COMPARISON OF THE FREQUENCY–INVARIANT AND

FREQUENCY–VARIANT COUPLINGS

The approach using the frequency-invariant coupling matrix
is quite accurate for the narrow band filter synthesis. However,
this method does not show filter response in the rejection band
in an accurate manner [8]. A two-pole bandpass filter, which
has a negative cross coupling from source to load, is shown in
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Fig. 1. Negative source-load coupling two-pole filter. (a) Frequency-invariant
ideal inverter negative source-load coupling (�K); (b) negative
frequency-variant source-load coupling after Pi-inverter transformations.

Fig. 2. Comparison of source-load cross-coupled two-pole filter
with a negative source-load coupling between frequency-invariant and
frequency-variant couplings.

Fig. 1. Impedance inverters are used to show the frequency-in-
variant couplings and to make a negative source-load coupling
( ) with respect to the main coupling. An achievable prac-
tical circuit after Pi-transformation of ideal inverters is shown
in Fig. 1(b). When a positive source-load coupling is employed,
two finite transmission zeros (FTZs) can be obtained, i.e.,
maximum FTZs out of resonators. The negative coupling in-
teracts with the main coupling elements and results in
FTZs (Fig. 2).

As seen in Fig. 2, near the center frequency of the filter, both
cases are well matched. However, the filter response is quite
different in the stopband frequencies. Thus, the truly frequency-
variant couplings must be taken into account to correctly predict
the filter stopband performance. We can take advantage of this
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Fig. 3. Filter response of the frequency-invariant and frequency-variant
couplings.

phenomenon to improve filter performance, by moving the extra
TZ closer to the passband.

The negative cross coupling (capacitive) and main coupling
(inductive) make at least three FTZs on the imaginary axis and
show asymmetrical insertion loss in the rejection band (Fig. 3).
To get closer, lower side two FTZs, shunt inductors from
the input/output transformer sections are removed and the orig-
inal circuit of Fig. 1(b) is tuned to obtain the response as shown
in Fig. 3. Since coupling coefficients are actually frequency-
variant, evaluation over the wide frequency range shows that
ideal frequency-invariant inverters do not correctly predict extra
FTZs in the rejection band.

For any filter network, the pole and zero locations can be
calculated from the network function. Frequency response of a
network is the value of the network function at

(1)

where is a scaling factor, and , are pole and zero locations.
Fig. 3 compares the filter response of the frequency-invariant

and frequency-variant networks from pole and zero locations
and the nodal admittance ( ) matrix [9]. Three FTZs explicitly
show the effect of the frequency-variant coupling contrasted to
the frequency-invariant case. In reality, the finite value of each
element only affects the real part of pole and zero locations, not
the number of poles and zeros. It is expressed as the degradation
of insertion and return loss (Fig. 4). The pole and zero locations
for finite networks clearly shows the existence of the extra
transmission in the lower stop band (Fig. 5).

For reasonably high values, it is easy to apply the fre-
quency-variant coupling approach to a practical circuit, control-
ling the TZs location in the stopband. Each FTZ is correlated

Fig. 4. Insertion and return loss with three FTZs after tuning.

Fig. 5. Pole and zero locations of the frequency-variant couplings in Fig. 3
circuit. Poles and zeros on the left are for Q = 50; poles and zeros on the right
are for Q = 500.

Fig. 6. Effect of the source-load bridging capacitance (C ) on the
transmission zeros in Fig. 3 circuit.

with the bridging capacitor ( ) and series inductors ( ,
, ) in Fig. 3 circuit. Thus, these FTZs are not controllable

separately in this lower-order configuration. FTZs are control-
lable in a limited range, while maintaining pass band charac-
teristics. Fig. 6 shows the effect and limitation of the bridging
capacitance on the transmission zeros.

In the following example a combline filter is used (Fig. 7).
A second-order example filter is shown to achieve three finite
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Fig. 7. Two-pole combline filter, three finite TZs, using the top metalized
dielectric block for source-load coupling.

Fig. 8. Equivalent circuit of Fig. 7, where Ceq = (" " � A=t); Leq =
net coupling between parallel-coupled lines; A: cross-sectional top and bottom
metal size; t: dielectric substrate thickness.

TABLE I
VALUES OF COMPONENTS FOR CIRCUITS OF FIGS. 1, 3, AND 7

(Rs = R = 50 
), INVERTERS ARE CONVERTED AT Fc = 5 GHz

transmission zeros. The main coupling between parallel-cou-
pled lines of combline filter is inductive. This inductive cou-
pling and inductors, as impedance transformers, can be used
to realize the extra TZ, with capacitive source-load cross cou-
pling. An equivalent circuit of the cross-coupled combline filter
is shown in Fig. 8.

However, the required capacitive coupling in the circuit of
Fig. 3 (see Table I) is so weak that it is not easy to realize as a
conventional capacitor. We propose the use of a dielectric block
metalized on the top surface to realize an inhomogeneous trans-
mission line to achieve the capacitive source-load coupling in
the combline filter (Fig. 7). The advantage of this approach is
that the required cross coupling value is realized by changing the
substrate thickness, dielectric constant, top metal size, or length
of the dielectric block. Connection wire side effects (lead induc-
tance) can be avoided.

An approximate calculation for the overlapping conductor
size of the cross coupled-transmission line block is determined
by parallel-plate capacitance formula (Fig. 8). Values of the
cross coupling block and other combline filter parameters are

Fig. 9. Comparison of simulated filter response of the combline filter using a
negative source-load coupling block.

displayed in Table I. Fig. 9 shows a comparison of the filter re-
sponse for the frequency-invariant and frequency-variant cou-
plings using Sonnet em® software. Even though the EM sim-
ulation result does not show two transmission zeros as clearly
as the EM-circuit co-simulation result, it shows explicitly im-
provement in the lower stop bands when contrasted to the fre-
quency-invariant couplings.

III. CONCLUSION

We have shown the difference between the filter response
computed assuming frequency-invariant couplings from the real
response based on real frequency-variant couplings. We propose
to take advantage of the “real” couplings to predict and achieve
extra transmission zeros by intentionally emphasizing the effect
of the frequency variation. An efficient top metalized dielectric
block overlay to be used in the planar bandpass filter design is
presented for the source-load cross coupling.
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